
Chapter 1

Model fitting by least squares

The first level of computer use in science and engineering ismodeling. Beginning from phys-
ical principles and design ideas, the computer mimics nature. After this, the worker looks
at the result and thinks a while, then alters the modeling program and tries again. The next,
deeper level of computer use is that the computer itself examines the results of modeling and
reruns the modeling job. This deeper level is variously called “fitting " or “estimation" or
“ inversion." We inspect theconjugate-direction methodof fitting and write a subroutine for
it that will be used in most of the examples in this monograph.

1.1 HOW TO DIVIDE NOISY SIGNALS

A single parameter fitting problem arises in Fourier analysis, where we seek a “best answer”
at each frequency, then combine all the frequencies to get a best signal. Thus emerges a wide
family of interesting and useful applications. However, Fourier analysis first requires us to
introduce complex numbers into statistical estimation.

Multiplication in the Fourier domain isconvolution in the time domain. Fourier-domain
division is time-domaindeconvolution. This division is challenging whenF has observational
error. Failure erupts if zero division occurs. More insidious are the poor results we obtain when
zero division is avoided by a near miss.

1.1.1 Dividing by zero smoothly

Think of any real numbersx, y, and f and any program containingx = y/ f . How can we
change the program so that it never divides by zero? A popular answer is to changex = y/ f
to x = y f/( f 2

+ ε2), whereε is any tiny value. When| f | >> |ε|, thenx is approximately
y/ f as expected. But when the divisorf vanishes, the result is safely zero instead of infinity.
The transition is smooth, but some criterion is needed to choose the value ofε. This method
may not be the only way or the best way to cope withzero division, but it is a good way, and
it permeates the subject of signal analysis.
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To apply this method in the Fourier domain, suppose thatX, Y, andF are complex num-
bers. What do we do then withX = Y/F? We multiply the top and bottom by the complex
conjugateF , and again addε2 to the denominator. Thus,

X(ω) =
F(ω) Y(ω)

F(ω)F(ω) + ε2
(1.1)

Now the denominator must always be a positive number greater than zero, so division is always
safe. Equation (1.1) ranges continuously frominverse filtering, with X = Y/F , to filtering
with X = FY, which is called “matched filtering.” Notice that for any complex numberF ,
the phase of 1/F equals the phase ofF , so the filters have the same phase.

1.1.2 Damped solution

Equation (1.1) is the solution to an optimization problem that arises in many applications.
Now that we know the solution, let us formally define the problem. First, we will solve a
simpler problem with real values: we will choose to minimize thequadratic function of x:

Q(x) = ( f x− y)2
+ ε2x2 (1.2)

The second term is called a “damping factor" because it preventsx from going to±∞ when
f → 0. Setd Q/dx= 0, which gives

0 = f ( f x− y)+ ε2x (1.3)

This yields the earlier answerx = f y/( f 2
+ ε2).

With Fourier transforms, the signalX is a complex number at each frequencyω. So we
generalize equation (1.2) to

Q(X̄, X) = (F X−Y)(F X−Y)+ ε2X̄ X = (X̄ F̄− Ȳ)(F X−Y)+ ε2X̄ X (1.4)

To minimize Q we could use a real-values approach, where we expressX = u+ i v in terms
of two real valuesu andv and then set∂Q/∂u = 0 and∂Q/∂v = 0. The approach we will
take, however, is to use complex values, where we set∂Q/∂ X = 0 and∂Q/∂ X̄ = 0. Let us
examine∂Q/∂ X̄:

∂Q(X̄, X)

∂ X̄
= F̄(F X−Y)+ ε2X = 0 (1.5)

The derivative∂Q/∂ X is the complex conjugate of∂Q/∂ X̄. So if either is zero, the other is
too. Thus we do not need to specify both∂Q/∂ X = 0 and∂Q/∂ X̄ = 0. I usually set∂Q/∂ X̄
equal to zero. Solving equation (1.5) forX gives equation (1.1).

Equation (1.1) solvesY = X F for X, giving the solution for what is called “thedeconvo-
lution problem with a known waveletF ." Analogously we can useY = X F when the filter
F is unknown, but the inputX and outputY are given. Simply interchangeX and F in the
derivation and result.
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1.1.3 Formal path to the low-cut filter

This book defines many geophysical estimation problems. Many of them amount to statement
of two goals. The first goal is a data fitting goal, the goal that the model should imply some
observed data. The second goal is that the model be not too big or too wiggly. We will state
these goals as two residuals, each of which is ideally zero. A very simple data fitting goal
would be that the modelm equals the datad, thus the difference should vanish, say 0≈m−d.
A more interesting goal is that the model should match the data especially at high frequencies
but not necessarily at low frequencies.

0 ≈ −i ω(m−d) (1.6)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress this, we need the
second goal, a model residual which is to be minimized. We need a small numberε. The
model goal is

0 ≈ ε m (1.7)

To see the consequence of these two goals, we add the squares of the residuals

Q(m) = ω2(m−d)2
+ ε2m2 (1.8)

and then we minimizeQ(m) by setting its derivative to zero

0 =
d Q

dm
= 2ω2(m−d)+2ε2m (1.9)

or

m =
ω2

ω2+ ε2
d (1.10)

which is the polarity preserving low-cut filter we found less formally earlier, equation (??).

1.1.4 How much damping?

Of some curiosity and significance is the numerical choice ofε. The general theory says we
need an epsilon, but does not say how much. Our low-pass filter approach in Chapter??made
it quite clear thatε is a filter cutoff which might better have been namedω0. We experimented
with some objective tests for the correct value ofω0, a subject that we will return to later.

1.2 MULTIVARIATE LEAST SQUARES

1.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three di-
mensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract vec-
tor .” For example, in earthquake studies, the vector might contain the time an earthquake
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began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector might
contain as many components as there are seismometers, and each component might be the
arrival time of an earthquake wave. Used in signal analysis, the vector might contain the val-
ues of a signal at successive instants in time or, alternatively, a collection of signals. These
signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal preceding
the next). When used in image analysis, the one-dimensional array might contain an image,
which could itself be thought of as an array of signals. Vectors, including abstract vectors, are
usually denoted byboldface letterssuch asp ands. Like physical vectors, abstract vectors
areorthogonal when their dot product vanishes:p ·s= 0. Orthogonal vectors are well known
in physical space; we will also encounter them in abstract vector space.

We consider first a hypothetical application with one data vectord and two fitting vectors
f1 andf2. Each fitting vector is also known as a “regressor." Our first task is to approximate
the data vectord by a scaled combination of the two regressor vectors. The scale factorsx1

andx2 should be chosen so that the model matches the data; i.e.,

d ≈ f1x1+ f2x2 (1.11)

Notice that we could take the partial derivative of the data in (1.11) with respect to an
unknown, sayx1, and the result is the regressorf1.

Thepartial derivative of all theoretical data with respect to any model parameter gives a
regressor. A regressoris a column in the matrix of partial-derivatives,∂di /∂mj .

The fitting goal (1.11) is often expressed in the more compact mathematical matrix nota-
tion d≈ Fx, but in our derivation here we will keep track of each component explicitly and use
mathematical matrix notation to summarize the final result. Fitting the observed datad= dobs

to its two theoretical partsf1x1 and f2x2 can be expressed as minimizing the length of the
residual vectorr , where

0 ≈ r = dtheor
−dobs (1.12)

0 ≈ r = f1x1+ f2x2 − d (1.13)

We use a dot product to construct a sum of squares (also called a “quadratic form ") of the
components of the residual vector:

Q(x1,x2) = r · r (1.14)

= (f1x1+ f2x2−d) · (f1x1+ f2x2−d) (1.15)

To find the gradient of the quadratic formQ(x1,x2), you might be tempted to expand out the
dot product into all nine terms and then differentiate. It is less cluttered, however, to remember
the product rule, that

d

dx
r · r =

dr
dx
· r + r ·

dr
dx

(1.16)
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Thus, the gradient ofQ(x1,x2) is defined by its two components:

∂Q

∂x1
= f1 · (f1x1+ f2x2−d)+ (f1x1+ f2x2−d) · f1 (1.17)

∂Q

∂x2
= f2 · (f1x1+ f2x2−d)+ (f1x1+ f2x2−d) · f2 (1.18)

Setting these derivatives to zero and using (f1 · f2)= (f2 · f1) etc., we get

(f1 ·d) = (f1 · f1)x1+ (f1 · f2)x2 (1.19)

(f2 ·d) = (f2 · f1)x1+ (f2 · f2)x2 (1.20)

We can use these two equations to solve for the two unknownsx1 andx2. Writing this expres-
sion in matrix notation, we have[

(f1 ·d)
(f2 ·d)

]
=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

] [
x1

x2

]
(1.21)

It is customary to use matrix notation without dot products. To do this, we need some ad-
ditional definitions. To clarify these definitions, we inspect vectorsf1, f2, and d of three
components. Thus

F = [f1 f2] =

 f11 f12

f21 f22

f31 f32

 (1.22)

Likewise, thetransposedmatrixF′ is defined by

F′ =
[

f11 f21 f31

f12 f22 f32

]
(1.23)

The matrix in equation (1.21) contains dot products. Matrix multiplication is an abstract way
of representing the dot products:

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
=

[
f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

 (1.24)

Thus, equation (1.21) without dot products is

[
f11 f21 f31

f12 f22 f32

]  d1

d2

d3

 =

[
f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

[
x1

x2

]
(1.25)

which has the matrix abbreviation

F′d = (F′ F)x (1.26)

Equation (1.26) is the classic result of least-squares fitting of data to a collection of regressors.
Obviously, the same matrix form applies when there are more than two regressors and each
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vector has more than three components. Equation (1.26) leads to ananalytic solution for x
using an inverse matrix. To solve formally for the unknownx, we premultiply by the inverse
matrix (F′ F)−1:

x = (F′ F)−1 F′d (1.27)

Equation (1.27) is the central result ofleast-squarestheory. We see it everywhere.

In our first manipulation of matrix algebra, we move around some parentheses in (1.26):

F′d = F′ (Fx) (1.28)

Moving the parentheses implies a regrouping of terms or a reordering of a computation. You
can verify the validity of moving the parentheses if you write (1.28) in full as the set of two
equations it represents. Equation (1.26) led to the “analytic” solution (1.27). In a later sec-
tion on conjugate directions, we will see that equation (1.28) expresses better than (1.27) the
philosophy of iterative methods.

Notice how equation (1.28) invites us to cancel the matrixF′ from each side. We cannot
do that of course, becauseF′ is not a number, nor is it a square matrix with an inverse. If you
really want to cancel the matrixF′, you may, but the equation is then only an approximation
that restates our original goal (1.11):

d ≈ Fx (1.29)

A speedy problem solver might ignore the mathematics covering the previous page, study
his or her application until he or she is able to write thestatement of goals(1.29) = (1.11),
premultiply byF′, replace≈ by =, getting (1.26), and take (1.26) to a simultaneous equation-
solving program to getx.

What I call “fitting goals” are called “regressions” by statisticians. In common language
the word regression means to “trend toward a more primitive perfect state” which vaguely
resembles reducing the size of (energy in) the residualr = Fx− d. Formally this is often
written as:

min
x
||Fx−d|| (1.30)

The notation above with two pairs of vertical lines looks like double absolute value, but we
can understand it as a reminder to square and sum all the components. This formal notation is
more explicit about what is constant and what is variable during the fitting.

1.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the fitting
functions. The fitting functions are the column vectorsf1, f2, andf3. Let us verify only that
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the dot productr · f2 vanishes; to do this, we’ll show that those two vectors are orthogonal.
Energy minimum is found by

0 =
∂

∂x2
r · r = 2 r ·

∂r
∂x2

= 2 r · f2 (1.31)

(To compute the derivative refer to equation (1.13).) Equation (1.31) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal" equations. The word “nor-
mal" means perpendicular. We can rewrite equation (1.28) to emphasize the perpendicularity.
Bring both terms to the left, and recall the definition of the residualr from equation (1.13):

F′(Fx−d) = 0 (1.32)

F′r = 0 (1.33)

Equation (1.33) says that theresidual vectorr is perpendicular to each row in theF′ matrix.
These rows are thefitting function s. Therefore, the residual, after it has been minimized, is
perpendicular toall the fitting functions.

1.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly those with Fourier series.
Let us extend the multivariable least-squares theory to the use of complex-valued unknowns
x. First recall how complex numbers were handled with single-variable least squares; i.e., as
in the discussion leading up to equation (1.5). Use a prime, such asx′, to denote the complex
conjugate of the transposed vectorx. Now write the positivequadratic form as

Q(x′,x) = (Fx−d)′(Fx−d) = (x′F′−d′)(Fx−d) (1.34)

After equation (1.4), we minimized a quadratic formQ(X̄, X) by setting to zero both∂Q/∂ X̄
and ∂Q/∂ X. We noted that only one of∂Q/∂ X̄ and ∂Q/∂ X is necessarily zero because
they are conjugates of each other. Now take the derivative ofQ with respect to the (possibly
complex, row) vectorx′. Notice that∂Q/∂x′ is the complex conjugate transpose of∂Q/∂x.
Thus, setting one to zero sets the other also to zero. Setting∂Q/∂x′ = 0 gives the normal
equations:

0 =
∂Q

∂x′
= F′(Fx−d) (1.35)

The result is merely the complex form of our earlier result (1.32). Therefore, differentiating by
a complex vector is an abstract concept, but it gives the same set of equations as differentiating
by each scalar component, and it saves much clutter.



8 CHAPTER 1. MODEL FITTING BY LEAST SQUARES

1.2.4 From the frequency domain to the time domain

Equation (1.4) is a frequency-domain quadratic form that we minimized by varying a single
parameter, a Fourier coefficient. Now we will look at the same problem in the time domain.
We will see that the time domain offers flexibility with boundary conditions, constraints, and
weighting functions. The notation will be that a filterft has inputxt and outputyt . In Fourier
space this isY= X F. There are two problems to look at, unknown filterF and unknown input
X.

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we writey ≈ Xf where the matrixX is a matrix of downshifted columns
like (??). Thus the quadratic form to be minimized is a restatement of equation (1.34) with
filter definitions:

Q(f′,f) = (Xf −y)′(Xf −y) (1.36)

The solutionf is found just as we found (1.35), and it is the set of simultaneous equations
0= X′(Xf −y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filterft in a matrix of downshifted
columnsF. Our statement of wishes is now to findxt so thaty ≈ Fx. We can expect to have
trouble finding unknown inputsxt when we are dealing with certain kinds of filters, such as
bandpass filters. If the output is zero in a frequency band, we will never be able to find the
input in that band and will need to preventxt from diverging there. We do this by the statement
that we wish0≈ ε x, whereε is a parameter that is small and whose exact size will be chosen
by experimentation. Putting both wishes into a single, partitioned matrix equation gives[

0
0

]
≈

[
r1

r2

]
=

[
F
ε I

]
x −

[
y
0

]
(1.37)

To minimize the residualsr1 andr2, we can minimize the scalarr ′r = r ′1r1+ r ′2r2. This is

Q(x′,x) = (Fx−y)′(Fx−y)+ ε2x′x

= (x′F′−y′)(Fx−y)+ ε2x′x (1.38)

We solved this minimization in the frequency domain (beginning from equation (1.4)).

Formally the solution is found just as with equation (1.35), but this solution looks un-
appealing in practice because there are so many unknowns and because the problem can be
solved much more quickly in the Fourier domain. To motivate ourselves to solve this problem
in the time domain, we need either to find an approximate solution method that is much faster,
or to discover that constraints or time-variable weighting functions are required in some ap-
plications. This is an issue we must be continuously alert to, whether the cost of a method is
justified by its need.
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1.3 KRYLOV SUBSPACE ITERATIVE METHODS

Thesolution time for simultaneouslinear equationsgrows cubically with the number of un-
knowns. There are three regimes for solution; which one is applicable depends on the number
of unknownsm. For m three or less, we use analytical methods. We also sometimes use an-
alytical methods on matrices of size 4×4 if the matrix contains many zeros. Today in year
2001, a deskside workstation, working an hour solves about a 4000×4000 set of simultaneous
equations. A square image packed into a 4096 point vector is a 64×64 array. The computer
power for linear algebra to give us solutions that fit in ak× k image is thus proportional to
k6, which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64×64 current practical limit.

The retina in our eyes captures an image of size about 1000×1000 which is a lot bigger
than 64× 64. Life offers us many occasions where final images exceed the 4000 points of
a 64×64 array. To make linear algebra (and inverse theory) relevant to such problems, we
investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values ofm and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And ifn andm are too large to allow enough iterations, the iterative methods can
be interrupted at any stage, the partial result often proving useful. Whether or not a partial
result actually is useful is the subject of much research; naturally, the results vary from one
application to the next.

1.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d−Fm) theexperimental error. (Hered is data,
m is model parameters, andF is their linear relation).

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimplification we had amodeling
error of the opposite polarity (Fm−d).

A strong experimentalist prefers to think of the error as experimental error, something for
him or her to work out. Likewise a strong analyst likes to think of the error as a theoretical
problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the above, and opposite to common practice, I define thesign convention
for the error (or residual) as (Fm−d). When we choose this sign convention, our hazard for
analysis errors will be reduced becauseF is often complicated and formed by combining many
parts.

Beginners often feel disappointment when the data does not fit the model very well. They
see it as a defect in the data instead of an opportunity to design a stronger theory.
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1.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of theresidual vector given by

residual = transform model space− data space (1.39)
r


=


F



 x

 −


d


(1.40)

A contour plot is based on an altitude function of space. The altitude is thedot product
r · r . By finding the lowest altitude, we are driving the residual vectorr as close as we can
to zero. If the residual vectorr reaches zero, then we have solved the simultaneous equations
d = Fx. In a two-dimensional world the vectorx has two components, (x1,x2). A contour is
a curve of constantr · r in (x1,x2)-space. These contours have a statistical interpretation as
contours of uncertainty in (x1,x2), with measurement errors ind.

Let us see how a random search-direction can be used to reduce the residual 0≈ r =Fx−d.
Let 1x be an abstract vector with the same number of components as the solutionx, and let
1x contain arbitrary or random numbers. We add an unknown quantityα of vector1x to the
vectorx, and thereby createxnew:

xnew = x+α1x (1.41)

This gives a new residual:

rnew = F xnew−d (1.42)

rnew = F(x+α1x)−d (1.43)

rnew = r +α1r = (Fx−d)+αF1x (1.44)

which defines1r = F1x.

Next we adjustα to minimize the dot product:rnew· rnew

(r +α1r ) · (r +α1r ) = r · r +2α(r ·1r ) + α21r ·1r (1.45)

Set to zero its derivative with respect toα using the chain rule

0 = (r +α1r ) ·1r + 1r · (r +α1r ) = 2(r +α1r ) ·1r (1.46)

which says that the new residualrnew= r +α1r is perpendicular to the “fitting function”1r .
Solving gives the required value ofα.

α = −
(r ·1r )

(1r ·1r )
(1.47)

A “computationtemplate” for the method of random directions is
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r ←− Fx−d
iterate {

1x ←− random numbers
1r ←− F 1x
α ←− −(r ·1r )/(1r ·1r )
x ←− x+α1x
r ←− r +α1r
}

A nice thing about the method of random directions is that you do not need to know the adjoint
operatorF′.

In practice, random directions are rarely used. It is more common to use thegradient
direction than a random direction. Notice that a vector of the size of1x is

g = F′r (1.48)

Notice also that this vector can be found by taking the gradient of the size of the residuals:

∂

∂x′
r · r =

∂

∂x′
(x′F′ − d′) (Fx − d) = F′ r (1.49)

Choosing1x to be the gradient vector1x = g= F′r is called “the method ofsteepest de-
scent.”

Starting from a modelx=m (which may be zero), below is atemplateof pseudocode for
minimizing the residual0≈ r = Fx−d by the steepest-descent method:

r ←− Fx−d
iterate {

1x ←− F′ r
1r ←− F 1x
α ←− −(r ·1r )/(1r ·1r )
x ←− x+α1x
r ←− r +α1r
}

1.3.3 Null space and iterative methods

In applications where we fitd≈ Fx, there might exist a vector (or a family of vectors) defined
by the condition0= Fxnull. This family is called anull space. For example, if the operator
F is a time derivative, then the null space is the constant function; if the operator is a second
derivative, then the null space has two components, a constant function and a linear function,
or combinations of them. The null space is a family of model components that have no effect
on the data.
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When we use the steepest-descent method, we iteratively find solutions by this updating:

xi+1 = xi +α1x (1.50)

xi+1 = xi +αF′r (1.51)

xi+1 = xi +αF′(Fx−d) (1.52)

After we have iterated to convergence, the gradient1x vanishes as doesF′(Fx−d). Thus, an
iterative solver gets the same solution as the long-winded theory leading to equation (1.27).

Suppose that by adding a huge amount ofxnull, we now changex and continue iterating.
Notice that1x remains zero becauseFxnull vanishes. Thus we conclude that any null space in
the initial guessx0 will remain there unaffected by the gradient-descent process.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the many
x vectors could be prohibitive. A much simpler and more practical goal is to find out if the
null space has any members, and if so, to view some of them. To try to see a member of the
null space, we take two starting guesses and we run our iterative solver for each of them. If
the two solutions,x1 andx2, are the same, there is no null space. If the solutions differ, the
difference is a member of the null space. Let us see why: Suppose after iterating to minimum
residual we find

r1 = Fx1−d (1.53)

r2 = Fx2−d (1.54)

We know that the residual squared is a convex quadratic function of the unknownx. Math-
ematically that means the minimum value is unique, sor1 = r2. Subtracting we find 0=
r1− r2= F(x1−x2) proving thatx1−x2 is a model in the null space. Addingx1−x2 to any to
any modelx will not change the theoretical data. Are you having trouble visualizingr being
unique, butx not being unique? Imagine thatr happens to be independent of one of the com-
ponents ofx. That component is nonunique. More generally, it is some linear combination of
components ofx thatr is independent of.

A practical way to learn about the existence of null spaces and their general appearance is
simply to try gradient-descent methods beginning from various different starting guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal,r1 6= r2, then you should be running your
solver through more iterations.

If two different starting solutions produce two different residuals, then you didn’t run your
solver through enough iterations.
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1.3.4 Why steepest descent is so slow

Before we can understand why theconjugate-direction methodis so fast, we need to see why
the steepest-descent methodis so slow. The process of selectingα is called “line search,"
but for a linear problem like the one we have chosen here, we hardly recognize choosingα as
searching a line. A more graphic understanding of the whole process is possible from consider-
ing a two-dimensional space where the vector of unknownsx has just two components,x1 and
x2. Then the size of the residual vectorr · r can be displayed with a contour plot in the plane
of (x1,x2). Visualize a contour map of a mountainous terrain. The gradient is perpendicular
to the contours. Contours and gradients arecurved lines. When we use the steepest-descent
method we start at a point and compute the gradient direction at that point. Then we begin a
straight-linedescent in that direction. The gradient direction curves away from our direction
of travel, but we continue on our straight line until we have stopped descending and are about
to ascend. There we stop, compute another gradient vector, turn in that direction, and descend
along a new straight line. The process repeats until we get to the bottom, or until we get tired.

What could be wrong with such a direct strategy? The difficulty is at the stopping loca-
tions. These occur where the descent direction becomesparallel to the contour lines. (There
the path becomes level.) So after each stop, we turn 90◦, from parallel to perpendicular to the
local contour line for the next descent. What if the final goal is at a 45◦ angle to our path?
A 45◦ turn cannot be made. Instead of moving like a rain drop down the centerline of a rain
gutter, we move along a fine-toothed zigzag path, crossing and recrossing the centerline. The
gentler the slope of the rain gutter, the finer the teeth on the zigzag path.

1.3.5 Conjugate direction

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane is
made from an arbitrary linear combination of two vectors. One vector will be chosen to be
the gradient vector, sayg. The other vector will be chosen to be the previous descent step
vector, says= xj − xj−1. Instead ofαg we need a linear combination, sayαg+ βs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two set
of linear equations forα andβ. The equations will be specified here along with the program.
(For nonquadraticfunctions a plane search is considered intractable, whereas a line search
proceeds by bisection.)

For use in linear problems, the conjugate-direction method described in this book follows
an identical path with the more well-known conjugate-gradient method. We use the conjugate-
direction method for convenience in exposition and programming.

The simple form of the conjugate-direction algorithm covered here is a sequence of steps.
In each step the minimum is found in the plane given by two vectors: the gradient vector
and the vector of the previous step. Given the linear operatorF and a generator of solution
steps (random in the case of random directions or gradient in the case of steepest descent),
we can construct an optimally convergent iteration process, which finds the solution in no
more thann steps, wheren is the size of the problem. This result should not be surprising.
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If F is represented by a full matrix, then the cost of direct inversion is proportional ton3,
and the cost of matrix multiplication isn2. Each step of an iterative method boils down to a
matrix multiplication. Therefore, we need at leastn steps to arrive at the exact solution. Two
circumstances make large-scale optimization practical. First, for sparse convolution matrices
the cost of matrix multiplication isn instead ofn2. Second, we can often find a reasonably
good solution after a limited number of iterations. If both these conditions are met, the cost
of optimization grows linearly withn, which is a practical rate even for very large problems.
Fourier-transformed variables are often capitalized. This convention will be helpful here, so
in this subsection only, we capitalize vectors transformed by theF matrix. As everywhere, a
matrix such asF is printed inboldface type but in this subsection, vectors arenot printed in
boldface print. Thus we define the solution, the solution step (from one iteration to the next),
and the gradient by

X = F x solution (1.55)

Sj = F sj solution step (1.56)

Gj = F gj solution gradient (1.57)

A linear combination in solution space, says+ g, corresponds toS+G in the conjugate
space, becauseS+G= Fs+Fg= F(s+g). According to equation (1.40), the residual is the
theoretical data minus the observed data.

R = Fx − D = X − D (1.58)

The solutionx is obtained by a succession of stepssj , say

x = s1 + s2 + s3 + ·· · (1.59)

The last stage of each iteration is to update the solution and the residual:

solution update : x ← x + s (1.60)

residual update : R ← R + S (1.61)

The gradientvector g is a vector with the same number of components as the solution
vectorx. A vector with this number of components is

g = F′ R = gradient (1.62)

G = F g = conjugate gradient (1.63)

The gradientg in the transformed space isG, also known as theconjugate gradient.

The minimization (1.45) is now generalized to scan not only the line withα, but simulta-
neously another line withβ. The combination of the two lines is a plane:

Q(α,β) = (R+αG+βS) · (R+αG+βS) (1.64)

The minimum is found at∂Q/∂α = 0 and∂Q/∂β = 0, namely,

0 = G · (R+αG+βS) (1.65)
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0 = S · (R+αG+βS) (1.66)

The solution is[
α

β

]
=

−1

(G ·G)(S·S)− (G ·S)2

[
(S·S) −(S·G)
−(G ·S) (G ·G)

] [
(G · R)
(S· R)

]
(1.67)

The many applications in this book all need to findα andβ with (1.67) and then update the
solution with (1.60) and update the residual with (1.61). Thus we package these activities in a
subroutine namedcgstep() . To use that subroutine we will have a computationtemplate like
we had for steepest descents, except that we will have the repetitive work done by subroutine
cgstep() . This template (or pseudocode) for minimizing the residual0≈ r = Fx−d by the
conjugate-direction method is

r ←− Fx−d
iterate {

1x ←− F′ r
1r ←− F 1x
(x,r ) ←− cgstep(x,r ,1x,1r )
}

where the subroutinecgstep() remembers the previous iteration and works out the step size
and adds in the proper proportion of the1x of the previous step.

1.3.6 Routine for one step of conjugate-direction descent

BecauseFortran does not recognize the difference between upper- and lower-case letters, the
conjugate vectorsG and S in the program are denoted bygg andss . The inner part of the
conjugate-direction task is in functioncgstep() .

module cgstep_mod {
real, dimension (:), allocatable, private :: s, ss

contains
integer function cgstep( forget, x, g, rr, gg) {

real, dimension (:) :: x, g, rr, gg
logical :: forget
double precision :: sds, gdg, gds, determ, gdr, sdr, alfa, beta
if( .not. allocated (s)) { forget = .true.

allocate ( s (size ( x)))
allocate (ss (size (rr)))
}

if( forget){ s = 0.; ss = 0.; beta = 0.d0 # steepest descent
if( dot_product(gg, gg) == 0 )

call erexit(’cgstep: grad vanishes identically’)
alfa = - sum( dprod( gg, rr)) / sum( dprod( gg, gg))
}

else{ gdg = sum( dprod( gg, gg)) # search plane by solving 2-by-2
sds = sum( dprod( ss, ss)) # G . (R - G*alfa - S*beta) = 0
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gds = sum( dprod( gg, ss)) # S . (R - G*alfa - S*beta) = 0
if( gdg==0. .or. sds==0.) { cgstep = 1; return }
determ = gdg * sds * max (1.d0 - (gds/gdg)*(gds/sds), 1.d-12)
gdr = - sum( dprod( gg, rr))
sdr = - sum( dprod( ss, rr))
alfa = ( sds * gdr - gds * sdr ) / determ
beta = (-gds * gdr + gdg * sdr ) / determ
}

s = alfa * g + beta * s # update solution step
ss = alfa * gg + beta * ss # update residual step
x = x + s # update solution
rr = rr + ss # update residual
forget = .false.; cgstep = 0

}
subroutine cgstep_close ( ) {

if( allocated( s)) deallocate( s, ss)
}

}

1.3.7 Setting up a generic solver program

There are many different methods for iterative least-square estimation some of which will
be discussed later in this book. The conjugate-gradient (CG) family (including the first order
conjugate-direction method described above) share the property that theoretically they achieve
the solution inn iterations, wheren is the number of unknowns. The various CG methods
differ in their numerical errors, memory required, adaptability to non-linear optimization, and
their requirements on accuracy of the adjoint. What we do in this section is to show you the
generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy in-
terface. The problem is that the OT codes must invoke the physical operators yet the OT codes
should not need to deal with all the data and parameters needed by the physical operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation problem. The
solver entrance is for the specialist in numerical algebra, who designs a new optimization
method.

The Fortran-90 programming language allows us to achieve this design goal by means of
generic function interfaces.

A generic solver subroutinesolver() is shown in modulesmallsolver . It is simplified
substantially from the library version, which has a much longer list of optional arguments

module smallsolver {
logical, parameter, private :: T = .true., F = .false.

contains
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subroutine solver( oper, solv, x, dat, niter, x0, res) {
optional :: x0, res
interface {

integer function oper( adj, add, x, dat) {
logical, intent (in) :: adj, add
real, dimension (:) :: x, dat
}

integer function solv( forget, x, g, rr, gg) {
logical :: forget
real, dimension (:) :: x, g, rr, gg
}

}
real, dimension (:), intent (in) :: dat, x0 # data, initial
real, dimension (:), intent (out) :: x, res # solution, residual
integer, intent (in) :: niter # iterations
real, dimension (size (x)) :: g # gradient
real, dimension (size (dat)) :: rr, gg # residual, conj grad
integer :: i, stat
rr = - dat
if( present( x0)) {

stat = oper( F, T, x0, rr) # rr <- F x0 - dat
x = x0 # start with x0
}

else {
x = 0. # start with zero
}

do i = 1, niter {
stat = oper( T, F, g, rr) # g <- F’ rr
stat = oper( F, F, g, gg) # gg <- F g
stat = solv( F, x, g, rr, gg) # step in x and rr
}

if( present( res)) res = rr
}

}

(The forget parameter is not needed by the solvers we discuss first.)

The two most important arguments insolver() are the operator functionoper , which
is defined by the interface from Chapter??, and the solver functionsolv , which implements
one step of an iterative estimation. For example, a practitioner who choses to use our new
cgstep() on page 15 for iterative solving the operatormatmult on page ?? would write the
call

call solver ( matmult_lop, cgstep, ...

The other required parameters tosolver() aredat (the data we want to fit),x (the model
we want to estimate), andniter (the maximum number of iterations). There is also a couple
of optional arguments. For example,x0 is the starting guess for the model. If this parameter
is omitted, the model is initialized to zero. To output the final residual vector, we include
a parameter calledres , which is optional as well. We will watch how the list of optional
parameters to the generic solver routine grows as we attack more and more complex problems
in later chapters.
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1.3.8 Why Fortran 90 is much better than Fortran 77

I’d like to digress from our geophysics-mathematics themes to explain why Fortran 90 has
been a great step forward over Fortran 77. All the illustrations in this book were originally
computed in F77. Then modulesmallsolver() on page 16 was simply a subroutine. It was
not one module for the whole book, as it is now, but it was many conceptually identical sub-
routines, dozens of them, one subroutine for each application. The reason for the proliferation
was that F77 lacks the ability of F90 to represent operators as having two ways to enter, one
for science and another for math. On the other hand, F77 did not require the half a page of
definitions that we see here in F90. But the definitions are not difficult to understand, and they
are a clutter that we must see once and never again. Another benefit is that the book in F77
had no easy way to switch from thecgstep solver to other solvers.

1.3.9 Test case: solving some simultaneous equations

Now we assemble a modulecgmeth for solving simultaneous equations. Starting with the
conjugate-direction modulecgstep_mod on page 15 we insert the modulematmult on page ??
as the linear operator.

module cgmeth {
use matmult
use cgstep_mod
use smallsolver

contains
# setup of conjugate gradient descent, minimize SUM rr(i)**2
# nx
# rr(i) = sum fff(i,j) * x(j) - yy(i)
# j=1
subroutine cgtest( x, yy, rr, fff, niter) {

real, dimension (:), intent (out) :: x, rr
real, dimension (:), intent (in) :: yy
real, dimension (:,:), pointer :: fff
integer, intent (in) :: niter
call matmult_init( fff)
call solver( matmult_lop, cgstep, x, yy, niter, res = rr)
call cgstep_close ()

}
}

Below shows the solution to 5×4 set of simultaneous equations. Observe that the “exact”
solution is obtained in the last step. Because the data and answers are integers, it is quick to
check the result manually.

d transpose
3.00 3.00 5.00 7.00 9.00

F transpose
1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
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1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter = 0, 4
x 0.43457383 1.56124675 0.27362058 0.25752524
res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642
x 0.51313990 1.38677299 0.87905121 0.56870615
res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783
x 0.39144871 1.24044561 1.08974111 1.46199656
res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438
x 1.00001287 1.00004792 1.00000811 2.00000739
res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788
x 1.00000024 0.99999994 0.99999994 2.00000024
res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001

EXERCISES:

1 One way to remove a mean valuem from signals(t)= s is with the fitting goal0≈ s−m.
What operator matrix is involved?

2 What linear operator subroutine from Chapter??can be used for finding the mean?

3 How many CD iterations should be required to get the exact mean value?

4 Write a mathematical expression for finding the mean by the CG method.

1.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coefficients we consider howback projectioncan be upgraded towards
inversion in the application calledmoveout and stack.

Figure 1.1: Top is a model tracem.
Next are the synthetic data traces,
d = Mm . Then, labeledniter=0

is the stack, a result of processing
by adjoint modeling. Increasing val-
ues of niter show x as a func-
tion of iteration count in the fitting
goald ≈Mm . (Carlos Cunha-Filho)
lsq-invstack90[ER]

The seismograms at the bottom of Figure 1.1 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the iterations
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proceed. Notice also on thestack that the early and late events have unequal amplitudes, but
after enough iterations they are equal, as they began. Mathematically, we can denote the
top trace as the modelm, the synthetic data signals asd = Mm , and the stack asM ′d. The
conjugate-gradient algorithm optimizes the fitting goald≈Mx by variation ofx, and the figure
showsx converging tom. Because there are 256 unknowns inm, it is gratifying to see good
convergence occurring after the first four iterations. The fitting is done by moduleinvstack ,
which is just likecgmeth on page 18 except that the matrix-multiplication operatormatmult

on page ?? has been replaced byimospray on page ??. Studying the program, you can
deduce that, except for a scale factor, the output atniter=0 is identical to the stackM ′d. All
the signals in Figure 1.1 are intrinsically the same scale.

module invstack {
use imospray
use cgstep_mod
use smallsolver

contains
# NMO stack by inverse of forward modeling
subroutine stack( nt, model, nx, gather, t0,x0,dt,dx,slow, niter) {
integer nt, nx, niter
real model (:), gather (:), t0,x0,dt,dx,slow
call imospray_init( slow, x0,dx, t0,dt, nt, nx)
call solver( imospray_lop, cgstep, model, gather, niter)
call cgstep_close (); call imospray_close () # garbage collection
}

}

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we usednearest-neighborinterpolation, we managed to preserve the spectrum
of the input, apparently all the way to the Nyquist frequency. Second, we preserved the true
amplitude scale without ever bothering to think about (1) dividing by the number of contribut-
ing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for in-
version.

1.5 VESUVIUS PHASE UNWRAPPING

Figure 1.2 shows radar1 images of Mt. Vesuvius2 in Italy. These images are made from
backscatter signalss1(t) ands2(t), recorded along twosatellite orbits 800 km high and 54
m apart. The signals are very high frequency (the radar wavelength being 2.7 cm). They
were Fourier transformed and one multiplied by the complex conjugate of the other, getting
the productZ = S1(ω)S̄2(ω). The product’s amplitude and phase are shown in Figure 1.2.

1Here we do not require knowledge of radar fundamentals. Common theory and practice is briefly sur-
veyed in Reviews of Geophysics, Vol 36, No 4, November 1998, Radar Interferometry and its application to
changes in the earth’s surface, Didier Massonnet and Kurt Feigl.

2A web search engine quickly finds you other views.
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Examining the data, you can notice that where the signals are strongest (darkest on the left),
the phase (on the right) is the most spatially consistent. Pixel by pixel evaluation with the
two frames in a movie program shows that there are a few somewhat large local amplitudes
(clipped in Figure 1.2) but because these generally have spatially consistent phase I would not
describe the data as containing noise bursts.

Figure 1.2: Radar image of Mt. Vesuvius. Left is the amplitude. Non-reflecting ocean in upper
left corner. Right is the phase. (Umberto Spagnolini)lsq-vesuvio90[ER,M]

To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and by local averaging, as shown in Figure 1.3. The decimation was to
about 1 part in 9 on each axis, and the local averaging was done in 9×9 windows giving the
same spatial resolution in each case. The local averaging was done independently in the plane
of the real part and the plane of the imaginary part. Putting them back together again showed
that the phase angle of the averaged data behaves much more consistently. This adds evidence
that the data is not troubled by noise bursts.

From Figures 1.2 and 1.3 we see thatcontours of constant phase appear to be contours of
constant altitude; this conclusion leads us to suppose that a study of radar theory would lead us
to a relation likeZ = eih whereh is altitude (in units unknown to us nonspecialists). Because
the flat land away from the mountain is all at the same phase (as is the altitude), the distance as
revealed by the phase does not represent the distance from the ground to the satellite viewer.
We are accustomed to measuring altitude along a vertical line to a datum, but here the distance
seems to be measured from the ground along a 23◦ angle from the vertical to a datum at the
satellite height.

Phase is a troublesome measurement because we generally see it modulo 2π . Marching up
the mountain we see the phase getting lighter and lighter until it suddenly jumps to black which
then continues to lighten as we continue up the mountain to the next jump. Let us undertake
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Figure 1.3: Phase based on decimated data (left) and smoothed data (right).lsq-squeeze90
[ER,M]

to compute the phase including all of its jumps of 2π . Begin with a complex numberZ
representing the complex-valued image at any location in the (x, y)-plane.

rei φ
= Z (1.68)

ln |r |+ i φ = ln Z (1.69)

φ = = ln Z (1.70)

A computer will find the imaginary part of the logarithm with the arctan function of two argu-
ments,atan2(y,x) , which will put the phase in the range−π < φ ≤ π although any multiple
of 2π could be added. We seem to escape the 2π N phase ambiguity by differentiating:

∂φ

∂x
= =

1

Z

∂ Z

∂x
(1.71)

∂φ

∂x
=
= Z̄ ∂ Z

∂x

Z̄ Z
(1.72)

For every point on they-axis, equation (1.72) is a differential equation on thex-axis, and
we could integrate them all to findφ(x, y). That sounds easy. On the other hand, the same
equations are valid whenx and y are interchanged, so we get twice as many equations as
unknowns. For ideal data, either of these sets of equations should be equivalent to the other,
but for real data we expect to be fitting the fitting goal

∇φ ≈
= Z̄∇Z

Z̄ Z
(1.73)

where∇ = ( ∂
∂x , ∂

∂y ).
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We will be handling the differential equation as a difference equation using an exact repre-
sentation on the data mesh. By working with the phase difference of neighboring data values,
we do not have to worry about phases greater than 2π (except where phase jumps that much
between mesh points). Thus we solve (1.73) with finite differences instead of differentials.
Module igrad2 is a linear operator for the difference representation of the gradient operator.

module igrad2 { # 2-D gradient with adjoint, r= grad( p)
integer :: n1, n2
#%_init (n1, n2)
#%_lop ( p(n1, n2), r(n1,n2,2))
integer i,j
do i= 1, n1-1 {
do j= 1, n2-1 {

if( adj) {
p(i+1,j ) += r(i,j,1)
p(i ,j ) -= r(i,j,1)
p(i ,j+1) += r(i,j,2)
p(i ,j ) -= r(i,j,2)
}

else { r(i,j,1) += ( p(i+1,j) - p(i,j))
r(i,j,2) += ( p(i,j+1) - p(i,j))
}

}}
}

To do the least-squares fitting (1.73) we pass theigrad2 module to the Krylov subspace
solver. (Other people might prepare a matrix and give it to Matlab.)

The difference equation representation of the fitting goal (1.73) is:

φi+1, j −φi , j ≈ 1φac

φi , j+1−φi , j ≈ 1φab
(1.74)

where we still need to define the right-hand side. Define the parametersa, b, c, andd as
follows: [

a b
c d

]
=

[
Zi , j Zi , j+1

Zi+1, j Zi+1, j+1

]
(1.75)

Arbitrary complex numbersa and b may be expressed in polar form, saya = raei φa and
b= rbei φb. The complex number̄ab= rarbei (φb−φa) has the desired phase1φab. To obtain it
we take the imaginary part of the complex logarithm ln|rarb|+ i 1φab.

φb−φa = 1φab = = ln āb
φd−φc = 1φcd = = ln c̄d
φc−φa = 1φac = = ln āc
φd−φb = 1φbd = = ln b̄d

(1.76)

which gives the information needed to fill in the right-hand side of (1.74), as done by subrou-
tine igrad2init() from moduleunwrap on page 25.
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1.5.1 Digression: curl grad as a measure of bad data

The relation (1.76) between the phases and the phase differences is
−1 1 0 0

0 0 −1 1
−1 0 1 0

0 −1 0 1




φa

φb

φc

φd

 =


1φab

1φcd

1φac

1φbd

 (1.77)

Starting from the phase differences, equation (1.77) hope to find all the phases themselves
because an additive constant cannot be found. In other words, the column vector [1,1,1,1]′

is in the null space. Likewise, if we add phase increments while we move around a loop, the
sum should be zero. Let the loop bea→ c→ d→ b→ a. The phase increments that sum to
zero are:

1φac+1φcd−1φbd−1φab = 0 (1.78)

Rearranging to agree with the order in equation (1.77) yields

−1φab+1φcd+1φac−1φbd = 0 (1.79)

which says that the row vector [−1,+1,+1,−1] premultiplies (1.77), yielding zero. Rearrange
again

−1φbd+1φac = 1φab−1φcd (1.80)

and finally interchange signs and directions (i.e.,1φdb=−1φbd)

(1φdb−1φca) − (1φdc−1φba) = 0 (1.81)

This is the finite-difference equivalent of

∂2φ

∂x∂y
−

∂2φ

∂y∂x
= 0 (1.82)

and is also thez-component of the theorem that the curl of a gradient∇×∇φ vanishes for any
φ.

The four1φ summed around the 2×2 mesh should add to zero. I wondered what would
happen if random complex numbers were used fora, b, c, andd, so I computed the four1φs
with equation (1.76), and then computed the sum with (1.78). They did sum to zero for 2/3
of my random numbers. Otherwise, with probability 1/6 each, they summed to±2π . The
nonvanishing curl represents a phase that is changing too rapidly between the mesh points.
Figure 1.4 shows the locations at Vesuvius where bad data occurs. This is shown at two
different resolutions. The figure shows a tendency for bad points with curl 2π to have a
neighbor with−2π . If Vesuvius were random noise instead of good data, the planes in Figure
1.4 would be one-third covered with dots but as expected, we see considerably fewer.
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Figure 1.4: Values of curl at Vesuvius. The bad data locations at both coarse and fine resolution
tend to occur in pairs of opposite polarity.lsq-screw90[ER,M]

1.5.2 Estimating the inverse gradient

To optimize the fitting goal (1.74), moduleunwrap() uses the conjugate-direction method
like the modulescgmeth() on page 18 andinvstack() on page 20.

module unwrap {
use cgstep_mod
use igrad2
use smallsolver

contains
subroutine grad2init( z, n1,n2, rt ) {
integer i, j, n1,n2
real rt( n1,n2,2)
complex z( n1,n2 ), a,b,c
rt = 0.
do i= 1, n1-1 {
do j= 1, n2-1 {

a = z(i ,j )
c = z(i+1,j ); rt(i,j,1) = aimag( clog( c * conjg( a) ) )
b = z(i, j+1); rt(i,j,2) = aimag( clog( b * conjg( a) ) )
}}

}
# Phase unwraper. Starting from phase hh, improve it.
subroutine unwraper( zz, hh, niter) {
integer n1,n2, niter
complex zz(:,:)
real hh(:)
real, allocatable :: rt(:)
n1 = size( zz, 1)
n2 = size( zz, 2)
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allocate( rt( n1*n2*2))
call grad2init( zz,n1,n2, rt)
call igrad2_init( n1,n2)
call solver( igrad2_lop, cgstep, hh, rt, niter, x0 = hh)
call cgstep_close ()
deallocate( rt)
}

}

An open question is whether the required number of iterations is reasonable or whether we
would need to uncover a preconditioner or more rapid solution method. I adjusted the frame
size (by the amount of smoothing in Figure 1.3) so that I would get the solution in about ten
seconds with 400 iterations. Results are shown in Figure 1.5.

Figure 1.5: Estimated altitude.lsq-veshigh90[ER,M]

1.5.3 Discontinuity in the solution

The viewing angle (23 degrees off vertical) in Figure 1.2 might be such that the mountain
blocks some of the landscape behind it. This leads to the interesting possibility that the phase
function must have a discontinuity where our viewing angle jumps over the hidden terrain. It
will be interesting to discover whether we can estimate functions with such discontinuities. I
am not certain that the Vesuvius data really has such a shadow zone, so I prepared the synthetic
data in Figure 1.6, which is noise free and definitely has one.

We notice the polarity of the synthetic data in 1.6 is opposite that of the Vesuvius data.
This means that the radar altitude of Vesuvius is not measured from sea level but from the
satellite level.
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A reason I particularly like this Vesuvius exercise is that slight variations on the theme
occur in various other fields. For example, in 3-D seismology we can take the cross-correlation
of each seismogram with its neighbor and pick the time lag of the maximum correlation.
Such time shifts from trace to trace can be organized as we have organized the1φ values of
Vesuvius. The discontinuity in phase along the skyline of our Vesuvius view is like the faults
we find in the earth.

EXERCISES:

1 In differential equations, boundary conditions are often (1) a specified function value or
(2) a specified derivative. These are associated with (1) transient convolution or (2) inter-
nal convolution. Gradient operatorigrad2 on page 23 is based on internal convolution
with the filter (1,−1). Reviseigrad2 to make a module calledtgrad2 which has tran-
sient boundaries.

Figure 1.6: Synthetic mountain with hidden backside. For your estimation enjoyment.
lsq-synmod90[ER,M]

1.6 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, theoretical data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methodsof statistical estimation.

1.6.1 Physical nonlinearity

When standard methods of physics relate theoretical datadtheor to model parametersm, they
often use a nonlinear relation, saydtheor= f(m). The power-series approach then leads to
representing theoretical data as

dtheor = f(m0+1m) ≈ f(m0)+F1m (1.83)



28 CHAPTER 1. MODEL FITTING BY LEAST SQUARES

whereF is the matrix of partial derivatives of data values by model parameters, say∂di /∂mj ,
evaluated atm0. The theoretical datadtheor minus the observed datadobs is the residual we
minimize.

0 ≈ dtheor−dobs = F1m+ [f(m0)−dobs] (1.84)

rnew = F1m+ rold (1.85)

It is worth noticing that the residual updating (1.85) in a nonlinear problem is the same as that
in a linear problem (1.44). If you make a large step1m, however, the new residual will be
different from that expected by (1.85). Thus you should always re-evaluate the residual vector
at the new location, and if you are reasonably cautious, you should be sure the residual norm
has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature and BillSymesat Rice University has a particularly active group.

1.6.2 Statistical nonlinearity

The data itself often hasnoise burstsor gaps, and we will see later in Chapter 7 that this
leads us to readjusting theweighting function. In principle, we should fix the weighting
function and solve the problem. Then we should revise the weighting function and solve the
problem again. In practice we find it convenient to change the weighting function during the
optimization descent. Failure is possible when the weighting function is changed too rapidly
or drastically. (The proper way to solve this problem is with robust estimators. Unfortunately,
I do not yet have an all-purpose robust solver. Thus we are (temporarily, I hope) reduced
to using crude reweighted least-squares methods. Sometimes they work and sometimes they
don’t.)

1.6.3 Coding nonlinear fitting problems

We can solve nonlinear least-squares problems in about the same way as we do iteratively
reweighted ones. A simple adaptation of a linear method gives us anonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity) the
template is:

iterate {
r ←− f(m)−d
DefineF= ∂d/∂m.
1m ←− F′ r
1r ←− F 1m
(m,r ) ←− step(m,r ,1m,1r )
}



1.6. THE WORLD OF CONJUGATE GRADIENTS 29

A formal theory for the optimization exists, but we are not using it here. The assump-
tion we make is that the step size will be small, so that familiar line-search and plane-search
approximations will succeed in reducing the residual. Unfortunately this assumption is not
reliable. What we should do is test that the residual really does decrease, and if it does not we
should revert to steepest descent with a smaller step size. Perhaps we should test an incremen-
tal variation on the status quo: where insidesolver on page 16, we check to see if the residual
diminished in thepreviousstep, and if it did not, restart the iteration (choose thecurrentstep
to be steepest descent instead of CD). I am planning to work with some mathematicians to
gain experience with other solvers.

Experience shows that nonlinear problems have many pitfalls. Start with a linear problem,
add a minor physical improvement or unnormal noise, and the problem becomes nonlinear and
probably has another solution far from anything reasonable. When solving such a nonlinear
problem, we cannot arbitrarily begin from zero as we do with linear problems. We must choose
a reasonable starting guess, and then move in a stable and controlled manner. A simple solution
is to begin with several steps of steepest descent and then switch over to do some more steps
of CD. Avoiding CD in earlier iterations can avoid instability. Strong linear “regularization”
discussed later can also reduce the effect of nonlinearity.

1.6.4 Standard methods

The conjugate-direction method is really a family of methods. Mathematically, where there
aren unknowns, these algorithms all converge to the answer inn (or fewer) steps. The var-
ious methods differ in numerical accuracy, treatment of underdetermined systems, accuracy
in treating ill-conditioned systems, space requirements, and numbers of dot products. Techni-
cally, the method of CD used in thecgstep module on page 15 is not the conjugate-gradient
method itself, but is equivalent to it. This method is more properly called theconjugate-
direction method with a memory of one step. I chose this method for its clarity and flexibility.
If you would like a free introduction and summary of conjugate-gradient methods, I particu-
larly recommendAn Introduction to Conjugate Gradient Method Without Agonizing Painby
Jonathon Shewchuk, which you can download3.

I suggest you skip over the remainder of this section and return after you have seen many
examples and have developed some expertise, and have some technical problems.

The conjugate-gradient methodwas introduced byHestenesandStiefel in 1952. To
read the standard literature and relate it to this book, you should first realize that when I write
fitting goals like

0 ≈ W(Fm−d) (1.86)

0 ≈ Am, (1.87)

they are equivalent to minimizing the quadratic form:

m : min
m

Q(m) = (m′F′−d′)W′W(Fm−d) + m′A′Am (1.88)

3http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps
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The optimization theory (OT) literature starts from a minimization of

x : min
x

Q(x) = x′Hx−b′x (1.89)

To relate equation (1.88) to (1.89) we expand the parentheses in (1.88) and abandon the con-
stant termd′d. Then gather the quadratic term inm and the linear term inm. There are two
terms linear inm that are transposes of each other. They are scalars so they are equal. Thus, to
invoke “standard methods,” you take your problem-formulation operatorsF, W, A and create
two subroutines that apply:

H = F′W′WF+A′A (1.90)

b′ = 2(F′W′Wd)′ (1.91)

The operatorsH andb′ operate on model space. Standard procedures do not require their
adjoints becauseH is its own adjoint andb′ reduces model space to a scalar. You can see that
computingH andb′ requires one temporary space the size of data space (whereascgstep

requires two).

When people have trouble with conjugate gradients or conjugate directions, I always refer
them to thePaige and Saunders algorithmLSQR. Methods that formH explicitly or im-
plicitly (including both the standard literature and the book3 method) square the condition
number, that is, they are twice as susceptible to rounding error as isLSQR. The Paige and
Saunders method is reviewed by Nolet in a geophysical context. I include modulelsqr on
this page without explaining why it works. The interface is similar tosolver on page 16.
Note that the residual vector does not appear explicitly in the program and that we cannot start
from a nonzero initial model.

module lsqr {
logical, parameter, private :: T = .true., F = .false.
private :: normalize

contains
subroutine solver( oper, x, dat, niter) {

interface {
integer function oper( adj, add, x, dat) {
logical, intent( in) :: adj, add
real, dimension (:) :: x, dat

}
}

real, dimension (:), intent (in) :: dat
real, dimension (:), intent (out) :: x
integer, intent (in) :: niter
real, dimension ( size( x )) :: w, v
real, dimension ( size( dat)) :: u
integer :: iter, stat
double precision :: alfa, beta, rhobar, phibar
double precision :: c, s, teta, rho, phi, t1, t2
u = dat; x = 0. ; call normalize( u, beta)
stat = oper( T,F,v,u); call normalize( v, alfa)
w = v
rhobar = alfa
phibar = beta
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do iter = 1, niter {
u = - alfa * u; stat = oper( F, T, v, u); call normalize( u, beta)
v = - beta * v; stat = oper( T, T, v, u); call normalize( v, alfa)
rho = sqrt( rhobar*rhobar + beta*beta)
c = rhobar/rho; s = beta/rho; teta = s * alfa
rhobar = - c * alfa; phi = c * phibar; phibar = s * phibar
t1 = phi/rho; t2 = -teta/rho
x = x + t1 * w
w = v + t2 * w
}

}
subroutine normalize( vector, size) {

real, dimension (:), intent (inout) :: vector
double precision, intent (out) :: size
size = sqrt( sum( dprod( vector, vector)))
vector = vector / size
}

}

1.6.5 Understanding CG magic and advanced methods

This section includes Sergey Fomel’s explanation on the “magic” convergence properties of
the conjugate-direction methods. It also presents a classic version of conjugate gradients,
which can be found in numerous books on least-square optimization. The key idea for con-
structing an optimal iteration is to update the solution at each step in the direction, composed
by a linear combination of the current direction and all previous solution steps. To see why this
is a helpful idea, let us consider first the method of random directions. Substituting expression
(1.47) into formula (1.45), we see that the residual power decreases at each step by

r · r − rnew· rnew =
(r ·1r )2

(1r ·1r )
. (1.92)

To achieve a better convergence, we need to maximize the right hand side of (1.92). Let us
define a new solution stepsnew as a combination of the current direction1x and the previous
steps, as follows:

snew = 1x+βs . (1.93)

The solution update is then defined as

xnew = x+αsnew . (1.94)

The formula forα (1.47) still holds, because we have preserved in (1.94) the form of equation
(1.41) and just replaced1x with snew. In fact, formula (1.47) can be simplified a little bit. From
(1.46), we know thatrnew is orthogonal to1r = Fsnew. Likewise,r should be orthogonal to
Fs (recall thatr wasrnew ands wassnew at the previous iteration). We can conclude that

(r ·1r ) = (r ·Fsnew) = (r ·F1x)+β(r ·Fs) = (r ·F1x) . (1.95)
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Comparing (1.95) with (1.92), we can see that adding a portion of the previous step to the
current direction does not change the value of the numerator in expression (1.92). However,
the value of the denominator can be changed. Minimizing the denominator maximizes the
residual increase at each step and leads to a faster convergence. This is the denominator
minimization that constrains the value of the adjustable coefficientβ in (1.93).

The procedure for findingβ is completely analogous to the derivation of formula (1.47).
We start with expanding the dot product (1r ·1r ):

(Fsnew·Fsnew) = F1x ·F1x+2β(F1x ·Fs)+β2Fs·Fs . (1.96)

Differentiating with respect toβ and setting the derivative to zero, we find that

0 = 2(F1x+βFs) ·Fs . (1.97)

Equation (1.97) states that theconjugate directionFsnew is orthogonal (perpendicular) to the
previous conjugate directionFs. It also defines the value ofβ as

β = −
(F1x ·Fs)
(Fs·Fs)

. (1.98)

Can we do even better? The positive quantity that we minimized in (1.96) decreased by

F1x ·F1x−Fsnew·Fsnew =
(F1x ·Fs)2

(Fs·Fs)
(1.99)

Can we decrease it further by adding another previous step? In general, the answer is positive,
and it defines the method of conjugate directions. I will state this result without a formal proof
(which uses the method of mathematical induction).

• If the new step is composed of the current direction and a combination of all the previous
steps:

sn = 1xn+
∑
i <n

βi si , (1.100)

then the optimal convergence is achieved when

βi = −
(F1xn ·Fsi )

(Fsi ·Fsi )
. (1.101)

• The new conjugate direction is orthogonal to the previous ones:

(Fsn ·Fsi ) = 0 for all i < n (1.102)

To see why this is an optimally convergent method, it is sufficient to notice that vectors
Fsi form an orthogonal basis in the data space. The vector from the current residual to the
smallest residual also belongs to that space. If the data size isn, thenn basis components (at
most) are required to represent this vector, hence no more thenn conjugate-direction steps are
required to find the solution.

The computation template for the method of conjugate directions is
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r ←− Fx−d
iterate {

1x ←− random numbers
s ←− 1x+

∑
i <n βi si where βi =−

(F1x·Fsi )
(Fsi ·Fsi )

1r ←− Fs
α ←− −(r ·1r )/(1r ·1r )
x ←− x+αs
r ←− r +α1r
}

What happens if we “feed” the method with gradient directions instead of just random
directions? It turns out that in this case we need to remember from all the previous stepssi

only the one that immediately precedes the current iteration. Let us derive a formal proof of
that fact as well as some other useful formulas related to the method ofconjugate gradients.

According to formula (1.46), the new residualrnew is orthogonal to the conjugate direction
1r = Fsnew. According to the orthogonality condition (1.102), it is also orthogonal to all
the previous conjugate directions. Defining1x equal to the gradientF′r and applying the
definition of the adjoint operator, it is convenient to rewrite the orthogonality condition in the
form

0 = (rn ·Fsi ) = (F′rn ·si ) = (1xn+1 ·si ) for all i ≤ n (1.103)

According to formula (1.100), each solution stepsi is just a linear combination of the gradient
1xi and the previous solution steps. We deduce from formula (1.103) that

0 = (1xn ·si ) = (1xn ·1xi ) for all i < n (1.104)

In other words, in the method of conjugate gradients, the current gradient direction is always
orthogonal to all the previous directions. The iteration process constructs not only an orthog-
onal basis in the data space but also an orthogonal basis in the model space, composed of the
gradient directions.

Now let us take a closer look at formula (1.101). Note thatFsi is simply related to the
residual step ati -th iteration:

Fsi =
r i − r i−1

αi
. (1.105)

Substituting relationship (1.105) into formula (1.101) and applying again the definition of the
adjoint operator, we obtain

βi =−
F1xn · (r i − r i−1)

αi (Fsi ·Fsi )
=−

1xn ·F′(r i − r i−1)

αi (Fsi ·Fsi )
=−

1xn · (1xi+1−1xi )

αi (Fsi ·Fsi )
(1.106)

Since the gradients1xi are orthogonal to each other, the dot product in the numerator is equal
to zero unlessi = n−1. It means that only the immediately preceding stepsn−1 contributes to
the definition of the new solution directionsn in (1.100). This is precisely the property of the
conjugate gradient method we wanted to prove.
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To simplify formula (1.106), rewrite formula (1.47) as

αi = −
(r i−1 ·F1xi )

(Fsi ·Fsi )
= −

(F′r i−1 ·1xi )

(Fsi ·Fsi )
= −

(1xi ·1xi )

(Fsi ·Fsi )
(1.107)

Substituting (1.107) into (1.106), we obtain

β =−
(1xn ·1xn)

αn−1(Fsn−1 ·Fsn−1)
=

(1xn ·1xn)

(1xn−1 ·1xn−1)
. (1.108)

The computation template for the method of conjugate gradients is then

r ←− Fx−d
β ←− 0
iterate {

1x ←− F′r
if not the first iterationβ ←−

(1x·1x)
γ

γ ←− (1x ·1x)
s ←− 1x+βs
1r ←− Fs
α ←− −γ /(1r ·1r )
x ←− x+αs
r ←− r +α1r
}

Moduleconjgrad on this page provides an implementation of this method. The interface is
exactly similar to that ofcgstep on page 15, therefore you can useconjgrad as an argument
to solver on page 16. When the orthogonality of the gradients, (implied by the classical
conjugate-gradient method) is not numerically assured, theconjgrad algorithm may loose its
convergence properties. This problem does not exist in the algebraic derivations, but appears in
practice because of numerical errors. A proper remedy is to orthogonalize each new gradient
against previous ones. Naturally, this increases the cost and memory requirements of the
method.

module conjgrad_mod {
real, dimension (:), allocatable, private :: s, ss

contains
subroutine conjgrad_close () {

if( allocated( s)) deallocate( s, ss)
}

function conjgrad( forget, x, g, rr, gg) result( stat) {
integer :: stat
real, dimension (:) :: x, g, rr, gg
logical :: forget
real, save :: rnp
double precision :: rn, alpha, beta
rn = sum( dprod( g, g))
if( .not. allocated( s)) { forget = .true.
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allocate( s (size (x ))); s = 0.
allocate( ss (size (rr))); ss = 0.
}

if( forget .or. rnp < epsilon (rnp))
alpha = 0.d0

else
alpha = rn / rnp

s = g + alpha * s
ss = gg + alpha * ss
beta = sum( dprod( ss, ss))
if( beta > epsilon( beta)) {

alpha = - rn / beta
x = x + alpha * s
rr = rr + alpha * ss
}

rnp = rn; forget = .false.; stat = 0
}

}
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